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Although it has been common practice for many 
years to subject vapor-liquid equilibrium data to 

thermodynamic analysis, in the past this practice has 
been largely confined to systems at low or moderate 
pressures. While many experimental studies of high­
pressure vapor-liquid equilibria have been published, 
little work has been reported on the reduction of such 
data to thermodynamic functions. However, such 
reduction is necessary for interpreting and correlating 
experimental data; thermodynamic analysis is the 
essential tool whereby experimental data can be general­
ized to enable prediction of phase behavior under condi­
tions different from those at which the data were ob­
tained. This tool is particularly useful for engineering 
work where it is often necessary to predict from binary 
data the behavior of a system containing more than two 
components. 

In this work, we discuss thermodynamic analysis of 
vapor-liquid equilibria at high pressures, including the 
critical region. We restrict attention to systems con­
taining nonpolar (or slightly polar) fluids such as those 
encountered in the petroleum and related industries. 
In particular, we present equations for reducing raw 
binary data to thermodynamically significant binary 
parameters; upon generalizing these equations to 
systems containing any number of components, we then 
predict phase behavior of multicomponent mixtures 
without introducing any ternary (or higher) parameters. 
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Fugacity coefficients, activity coefficients, 

and liquid partial molar volumes are the 

keys to the thermodynamic development 

of these equilibrium calculations 



The fundamental equation of vapor-liquid equilibrium 
is conveniently written in terms of fugacities; for each 
component i the fugacity in the vapor ft V is equal to that 
in the liquid, f/: 

f/ =f/ (1) 

To facilitate thermodynamic analysis, we introduce 
two auxiliary functions: the vapor-phase fugacity 
coefficient CPt and the liquid-phase activity coefficient 
'Yt: 

f/ = qJtYtP 

f/. = 'YtXdtO 

(2) 

(3) 

where y and x are, respectively, mole fractions in the 
vapor and in the liquid, P is the total pressure, and fi" 
is the standard-state fugacity of component i. Each 
of these auxiliary functions is discussed separately; 
Section A considers the fugacity coefficient while Sections 
Band C consider the activity coefficient. Finally, in 
Section D we synthesize the analysis of the other sections 
and compare with experiment some predicted results for 
several multicomponent systems. 

A. Vapor-Phase Fugacity Coefficients 

In this section we are concerned with a reliable 
technique for calculating vapor-phase fugacity co­
efficients in nonpolar mixtures, including those contain-

ing one of the quantum gases. To that end we propose 
to use the Redlich-Kwong equation with certain modi­
fications. 

The Redlich-Kwong equation (32) is now nearly 20 
years old; recently it has been discussed by several 
authors (2, 72, 36, 41), and it is generally regarded as 
the best two-parameter equation now available (40). 
For mixtures, however, it often gives poor results, as 
does the recent modification given by Redlich and co­
workers (31). The failure of the equation to give 
consistently good results for mixtures is due to the 
inflexible mixing rules for the composition dependence 
of the equation-of-state constants. We propose a 
modified mixing rule for the constant a; this modifica­
tion incorporates one characteristic binary constant, and 
such constants have been reported for 115 binary systems 
(8). Extension to multicomponent systems follows with­
out further assumptions and with no ternary (or higher) 
constants. A somewhat similar treatment, restricted to 
paraffin-carbon dioxide mixtures, has been suggested 
by Joffe and Zudkevitch (76). Other modifications 
of the Redlich-Kwong equation have been reported by 
Wilson (41), Esters and Tully (72), Robinson and Jacoby 
(36), and by Barner, Pigford, and Schreiner (2). 

The Redlich-Kwong equation is: 

where 

P = RT 
v - b 

a 

rtaR2Tet6 
a = ~---'-"--

Pet 

b = rtbRTej 
Pej 

(4) 

(5) 

(6) 

The dimensionless constants rta and rtb are, respectively, 
0.4278 and 0.0867 if the first and second isothermal 
derivatives of pressure with respect to volume are set 
equal to zero at the critical point. In vapor-liquid 
equilibria, however, we are interested in the volumetric 
behavior of saturated vapors over a relatively wide range 
of temperature, rather than in the critical region only. 
We propose, therefore, to evaluate !2a and !2b for each 
pure component by fitting Equation 4 to the volumetric 
data of the saturated vapor. The temperature range 
used is that from the normal boiling point to the critical 
temperature. A list of rta and rtb for the saturated vapors 
of 19 pure substances most often encountered in high 
pressure vapor-liquid equilibria has been given (8). 

To apply Equation 4 to mixtures, we need a mixing 
rule. We propose: 

b (7) 

where 

(8) 

and 

(9) 
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where 

Z.,; = 0.291 - 0.08 (WI ~ WJ) 

T.t; = vi T.
" 

T.u (1 - klJ) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

The binary constant klJ represents the deviation from 
the geometric mean for T.w It is a constant charac­
teristic of the i-j interaction; to a good approximation 
klJ is independent of the temperature, density, and 
composition. In general, klj must be obtained from 
some experimental information about the binary inter­
action. Good sources of this information are provided 
by second virial cross coefficients (28). Best estimates 
of klj have been reported for 115 binary systems (8). 

Fugacity coefficient. The fugacity of a component i 
in a gas mixture is related to the total pressure P and its 
mole fraction Yt through the fugacity coefficient (1), as 
shown in Equation 2 of the preceding section. 

The fugacity coefficient is a function of pressure, 
temperature, and gas composition; it is related to the 
volumetric properties of the gas mixture by the exact 
relation (3, 24): 

RT In IPt = fa> [(()P) - RTJ dV -
J v ()nt T.V .n; V 

RT In Z (16) 

where V is the total volume of the gas mixture, and z 
is the compressibility of the gas mixture at T and P. 

By substituting Equation 4 and the mixing rules, 
Equations 7 to 15, into 16, the fugacity coefficient of 
component k in the mixture becomes: 

N 

b 
2 L: Y,Q,J: 

In - 1 v + J: i _ 1 In v + b + IPJ: - n -- -- - --
v - b v - b RTa/2b v 

R~~2b2 [In v ~ b - v ~ bJ - In :~ (17) 

The molar volume, v, is that of the gas mixture; It 18 

obtai,hed by solving Equation 4 (which is cubic in v) 
and takmg the largest real root for v. 

Figure 1 shows experimental a,nd calculated fugacity 
coeffici!1nts of carbon dioxide in a mixture containing 
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Figure 7. Fugacity coefficients of carbon dioxitk in a mixture con­
taining 85 mole per cent n-butane at 3400 F. (ku = 0.78 obtained 
from second virial coefficient data) 

85 mole per cent n-butane at 3400 F. The experimental 
fugacity coefficients of carbon dioxide are obtained from 
the volumetric data of Olds et al. (22). The comparison 
is a rather stringent one since the mole fraction of carbon 
dioxide is small and the gas mixture is near its critical 
temperature. The fuga~ty coeffici.ent of carbon di­
oxi'de shows an unusual pressure dependence, going 
through two inflections and a sharp maximum. Agree­
ment is good considering the uncertainty involved in the 
numerical differentiation of the experimental data. 
Also indicated is the poor result obtained when the 
geometrical mean assumption is used for T .... The 
Lewis fugacity rule fails badly at all pressures, since the 
mole fraction of carbon dioxide is small. 

The configurational properties of low-molecular­
weight gases (hydrogen, helium, neon) are described by 
quantum, rather than classical, statistical mechanics. 
As a result, the properties of these gases cannot be given 
by the same corresponding-states treatment (Equations 
8, 10-15) as that used for classical gases when the 
true critical constants are used as the reducing param­
eters. It is possible, however, to define temperature-de­
pendent effective critical constants with which the prop­
erties of quantum gases can be made to coincide with 
those for classical gases (13). 

Figure 2 shows experimental and calculated fugacity 
coefficients of methane in a mixture with hydrogen at 
equilibrium with solid methane (74). Good agreement 
at these low temperatures and high pressures suggests 
that the revised Redlich-Kwong equation can be success­
fully applied to mixtures of nonpolar and quantum 
gases. Other examples for fugacity coefficients and for 
compressibility factors of vapor mixtures have also been 
reported (8). 



B. liquid-Phase Activity Coefficients: Effect of Composition 

For isothermal phase equilibria, the liquid-phase 
activity coefficient depends on the liquid-phase composi­
tion and also on the total pressure. For effective thermo­
dynamic analysis and correlation of high-pressure vapor­
liquid equilibrium data, it is important to separate 
the effect of pressure from that of composition. For a 
binary system, it is useful, therefore, to define two 
adjusted activity coefficients independent of pressure 
(25) by: 

'Yl(pr) (18) 

and 

r /2 i PT 
V2

L 

'Y2*(P) = exp - dP 
x.Ji2(1)(pr) p RT 

(19) 

where subscript 1 refers to the condensable and sub­
script 2 to the non condensable component. 

The fugacities, hand h, are those at the total pressure 
P of the system. The reference pressure P is arbitrary 
and is most conveniently set equal to zero. As shown 
elsewhere (25), the constant-pressure activity coefficients 
defined by Equations 18 and 19 satisfy th,.. isothermal, 
isobaric Gibbs-Duhem equation: 

Figure 2. Fugacity coefficients of metlw.ne in hydrogen at saturation 
(k12 = 0.03 obtained from second vinal coefficient data) 

As a result, the composition dependence of these activity 
coefficients can be represented by an integrated form of 
Equation 20 (for example, the van Laar equation or the 
Margules equation) as commonly used in low-pressure 
vapor-liquid equilibria. Through the exponential fac­
tors in Eq ua tions 18 and 19 (the Poyn ting correction), 
the effect of pressure is separated from the effect of com­
position, and as a result, interpretation and correlation 
of high-pressure phase-equilibrium data are very much 
facilitated (25). A technique for calculating partial 
molar volumes VlL and V2L , required in Equations 18 
and 19, is presented in Section C. 

The asterisk (*) in Equation 19 is a reminder that the 
unsymmetric convention has been used for normalization 
of activity coefficients. For sub critical component 1 
(the temperature T of the solution is well below the 
critical temperature TcJ, the standard-state fugacity is 
the fugacity of pure liquid 1 at the temperature of the 
solution and at the constant reference pressure P. 
For supercritical component 2 (the temperature T of the 
solution is near or above the critical temperature T c,) , 

the standard-state fugacity is its Henry's constant in 
solvent 1 at the temperature of the solution and at P. 
As a result, both activity coefficients approach unity 
as the liquid solution becomes infinitely dilute with 
respect to the light component: 

'Yl(P") -- 1 as Xl -- 1 (21) 
'Y2*(pr) __ 1 as X2 -- 0 (22) 

The unsymmetric convention of normalization has 
the advantage that it avoids the use of any ill-defined 
hypothetical liquid standard state for the non condensable 
supercritical component. It has been repeatedly found 
that no unique reference fugacity exists for such a hypo­
thetical liquid; for a noncondensable supercritical 
component, the hypothetical pure-liquid fugacities ob­
tained from vapor-liquid equilibria of that component 
in various solvents may differ considerably from each 
other. Ambiguity in the standard-state fugacity of a 
supercritical gas can be avoided by the use of the well­
defined and experimentally accessible Henry's constant 
(25). H 2(1)(pr) is given by: 

H 2(1)(P') = H 2(I) (P,' ~ dP ~
pr-", 

p,S RT 
(23) 

where H 2(1) (P
,
') is evaluated by extrapolating to X2 = 0 

a plot ofln/2/x2 VS. X2. In Equation 23, Pl' is the satura­
tion (vapor) pressure of solvent 1 and V2'" is the liquid 
partial molar volume of component 2 infinitely dilute 
in solvent 1. 

Excess Gibbs energy. Following Scatchard (39), 
we define the excess Gibbs energy per mole of solution 
by 

(24) 
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Table I. Self-interaction Constants for Some Binary Systems 

a 22(1), 

r, Ib-mole/ 
System oR ft3 System 

Methane(2)- 259.7 0.425 Methane(2)-
ethane{1 ) 309.7 0.305 n-pentane( 1 ) 

359.7 0.182 contd. 
409.7 0.210 
459.7 0.333 Ethylene(2)-
509.7 0.680 ethane(l ) 

Methane(2)- 259.7 0.342 
propane(l) 309.7 0.322 

359.7 0.322 
409.7 0.355 Ethylene(2)-
459.7 0.415 acetylene( 1 ) 
491.7 0.462 
509.7 0.498 
559.7 0.593 Ethane(2)-
619.7 0.936 acetylene( 1 ) 

Methane(2)- 559.7 0.548 
n-pentane( 1 ) 

In view of the unsymmetric normalization, gE* vanishes 
at infinite dilution with respect to component 2 but not 
with respect to component 1; that is, 

gE* _ 0 as Xz - 0 

but (25) 

gE* ,e 0 as Xl - 0 

As defined here, the ideal solution (g E* = 0) is one 
where at constant temperature and pressure the fugacity 
of the light component is given by Henry's law and that 
of the heavy component by Raoult's law. In molecular 
terms this means that gE* is zero whenever the concen­
tration of component 2 in the liquid phase is sufficiently 
small to prevent molecules of component 2 from inter­
acting with one another. 

In a manner analogous to that used by Wohl (42), 
the excess Gibbs energy can be represented by summing 
interactions of molecules: 

gE* 
(26) 

where q, is the effective volume fraction 

q,z = X2q2 

Xlql + X2q2 

(27) 

where qt is the effective size of molecule i and where 
CX2Z(1) is the self-interaction constant of molecules 2 in 
the environment of molecules 1. In Equation 26 only 
two-body interactions are considered; higher terms are 
neglected to keep the number of adjustable parameters to 
a minimum. 
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a 22(1) , a 22(I) , 

r, Ib-mole/ r, Ib-mole/ 
OR 't3 System ° R ft3 

619.7 0.706 Ethane(2)- 259.7 0.066 
679.7 0.939 propane{1 ) 309.7 0.059 
739.7 1.230 359.7 0.051 

409.7 0.043 
359.7 0.075 459.7 0.034 
419.7 0.058 509.7 0.026 
459.7 0.039 559.7 0.025 
499.7 0.053 579.7 0.029 
519.7 0.069 599.7 0.038 

619.7 0.053 
424.7 0.305 639.7 0.099 
459.7 0.270 
499.7 0.244 Propane(2)- 559.7 0.023 

n-pentane( 1 ) 619.7 0.032 
424.7 0.538 679.7 0.049 
459.7 0.490 739.7 0.080 
499.7 0.365 799.7 0.141 
519.7 0.277 

Activity coefficients can be found from the exact 
relations 

I (P') _ (anTgE* / RT) n'Yl - ----
anl T.P."" 

(28) 

(29) 

where nl is the number of moles of component 1 and nr 
is the total number of moles. 

Dilated van Laar model for binary liquid mixtures. 
Equations 26, 27, and 28 yield the classical van Laar 
equations (for unsymmetric normalization) as reported 
previously (25). Muirbrook (20) has shown that these 
equations, containing two adjustable parameters, are 
unsatisfactory for describing the properties of some sys­
tems which are at a temperature much above the critical 
temperature of the light component or near the critical 
temperature of the heavy component. In additiqn, 
Muirbrook found that the three-suffix Margules equa­
tions were also unsatisfactory (20). 

The probable reason for the failure of the classical 
van Laar treatment is due to van Laar's assumption 
that ql and q2 are constants independent of composition. 
The q's are parameters which reflect the cross sections, 
or sizes, or spheres of influence of the molecules; at 
conditions remote from critical, where the liquid molar 
volumes is close to a linear function of the mole fraction, 
it is reasonable to assume that the q's are composition 
independent. However, for a liquid mixture of a non­
condensable component 2 with a subcritical liquid 1, 
the molar volume of the mixture is a highly nonlinear 



Table II. Dilation Constants of Some Binary 
Systems 

System 

Methane(2)-propane( 1 ) 

Methane(2)-n.pentane( 1 ) 

Propane(2)-n-pentane( 1 ) 

Methane(2)-ethane( 1 ) 

Ethane(2)-propane( 1) 

T,O R 

407.7 
499.7 
559.7 
619.7 

559.7 
619.7 
679.7 
739.7 

679.7 
739.7 
799.7 

359.7 
409.7 
459.7 
509.7 

559.7 
599.7 
619.7 
639.7 

'7'(1) 

0.3\ 
1.46 
4.12 

28.35 

1.19 
1.62 
2.25 
8.39 

0.27 
1.23 

26.24 

0.90 
1.29 
3.06 

27.10 

1.30 
4.41 

12.28 
43.54 

Table III. Henry's Constants of Some Solutes 
in Solvents 

H ~,;?l 
System T, o R psia 

Methane(2)-ethane( 1 ) 359.7 690 
409.7 1029 
459.7 1330 
509.7 1500 

Methane(2)-propane(1 ) 359.7 870 
409.7 1360 
459.7 1800 
491.7 2044 
509.7 2130 
559.7 2141 
619.7 1844 

Methane(2)-n-pentane(1 ) 559.7 2821 
619.7 3185 
679.9 3256 
739.7 2943 

Ethane(2)-propane( 1 ) 559.7 449 
579.7 503 
599.7 573 
619.7 616 
639.7 631 

Propane(2)-n-pentane( 1 ) 619.7 289 
679.7 447 
739.7 610 
799.7 750 
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function of the mole fraction, especially in the vicinity 
of the critical composition. The liquid solution dilates 
as X2 rises, and van Laar's model must be modified to 
take this effect into account. 

For practical reasons (since experimental data are 
usually not plentiful), it is desirable to derive equations 
for the constant-pressure activity coefficients which 
contain no more than two parameters. Because of this 
limitation, we assume that whereas q1 and q2 depend on 
composition, their ratio does not. Since the van Laar 
treatment is a two-body (quadratic) theory, we assume 
that q1 and q2 are given by a quadratic function of the 
effective volume fraction: 

q1 = ve.[l + 1/2(,)ch
2

] 

q2 = ve,[l + 1/2(,)cf> 22] 

(30) 

(31) 

(From Equations 30 and 31, it follows that the volume fraction 
<l>i is given by <l>, = XiV • .!}; , XiVc .• ) 

3D 'S I 
In Equations ~ and we have arbitrarily used 

the pure-component critical volumes as our measure 
of the molecular cross sections at infinite dilution, when 
cf>2 = O. Some other constant (for example, van der 
Waals b or Leonard-Jones 0- 3) could just as easily be 
used. The dilation constant 112(1) is a measure of how 
effectively the light component dilates (swells) the liquid 
solution. 

When Equations 30 and 31 are substituted into Equa­
tion 26, the pressure-independent activity coefficients 
are 

where 

In 'Yl(P') = Acf>22 + Bcf>24 

A (ve
. ) (cf>22 - 2 cf>2) + 

VOl 

A = CX22(\ )V,' 

B == 3 1/2(\ )Q!22(\ )V,' 

(32) 

(34) 

(35) 

Equations 32 and 33 are the desired two-parameter 
equations. These equations provide accurate represen­
tation of the constant-pressure activity coefficients of 
nonpolar binary mixtures from the dilute region up to 
the critical composition. To illustrate, Figures 3 and 4 
present typical results of data reduction for two binary 
systems, propane-methane (30) and carbon dioxide­
nitrogen (27). 

Self-interaction constants, dilation constants, and 
Henry's constants for some binary systems are given in 
Tables I, II, and III. The magnitude of the dilation 
constant shows a consistent and meaningful variation 
with respect to the temperature and the properties of the 
constituent components; the dilation constants are 
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Figure 3. Activity coefficients for the propane (2)-methane(3) 
system at 700° F. 

Figure 4. Activity coefficients for the carbon dioxide(7)-nitrogen(2) 
system at 32° F. 
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larger for those systems at temperatures approaching the 
critical temperature of the heavy component (component 
1); also, they are larger for those systems in which the 
light component is highly supercritical. This behavior 
of dilation constants is in agreement with their physical 
significance in the dilated van Laar model-i.e., the 
liquid phase is swelled or dilated most when the sub­
critical heavy component itself is near its critical tem­
perature, or when the light component is far above its 
critical temperature. Under these conditions the liquid 
molar volume increases sharply with dissolved gas. 

Plots of In 1]1/2 vs. l/T show a similar shape for all 
systems. It has been possible to unify all the curves into 
a single reduced plot, as shown in Figure 5. The curve 
can be represented by 

In (1]N*)1/2 = -30.2925 + 39.1396 (T*/T) 

17.2182 (T*/T)2 + 2.81464 (T*/T)3 -

2.78571/(T*/T) - 5.26736 In (T*/T - 0.9) (36) 

where 1]* is a constant characteristic of the light com­
ponent and T* is a constant characteristic of the binary 
system. Some values of 1]* and T* are given in Figure 
5. 

Mixtures of condensable components. At tem­
peratures sufficiently lower than the critical tempera­
ture of the light component (component 2), the dilation 
constant 1] obtained from data reduction becomes so 
small that it can be effectively equated to zero. Under 
these conditions, the constant-pressure activity co­
efficients of both components can be correlated with only 
one parameter, a. We found empirically that this 
occurs for T R. less than 0.93. Therefore, components 
with a reduced temperature smaller than 0.93 are 
treated as heavy components (solvent), and those with 
T R larger than 0.93 are treated as light components 
(solute). Systems for which both TRI and T R• are 
smaller than 0.93 are correlated with 1] = 0 and only 
one parameter, a. System& for which the critical tem­
peratures of the two components are very close (such as 
acetylene-ethane) are also analyzed with only one 
parameter, a, even though T R • is larger than 0.93; 
the terms "heavy" and "light" component lose their 
conventional meaning for such systems. In fact, it 
sometimes happens that the component with the higher 
critical temperature ("heavy") may actually have a 
higher vapor pressure and critical pressure than the 
component with the lower critical temperature ("light"). 

For those systems where both components can exist in 
the pure liquid state, it is not necessary to use the 
unsymmetric convention for normalization of activity 
coefficients. Instead, such a system can be analyzed 
with a one-parameter, symmetric-convention expression 
for the excess Gibbs energy: 

- -- ---



Figure 5. Correlation of dilation constants 1/2(1) for some binary 
systems 

From Equations 28 and 29 we obtain 

where 'Yl(P) is given by Equation 18 and 'Y2(pr) by 

( ) h i pr 
V2

L 

'Y2 pr = exp - dP 
X2!pure 2(P') p RT 

(37) 

(38) 

(39) 

(40) 

It can be shown (5, 26) that for the case when both com­
ponents are subcritical and the excess Gibbs energy 
can be represented by Equation 37, or by Equation 26 
with ql = Vel' q2 = Ve,-i.e., 7] = Q-there exist rigorous 
relationships between the constants in the two conven­
tions, viz.: 

aU(!) = a12 (41) 

In H 2(t/P) = lnfpure 2(pr) + Vc,a12 (42) 

Dilated van Laar model for a multicomponent 
liquid mixture. Extension of the dilated van Laar 
model to the multicomponent case is best illustrated for a 

four-component system containing two solvents and two 
solutes. The results may then be generalized for a 
solution containing any number of solutes and solvents 
as shown elsewhere (26). 

We use the following notation: 

Components 1 and 2 Solvents (TRt ~ 0.93) 

Components 3 and 4 Solutes (TRt > 0.93) 

In the subsequent discussion of excess Gibbs energy we 
consider only the excess energy due to the interaction of 
solute molecules in the mixed solvent-Le., the excess 
Gibbs energy is taken relative to a solution infinitely 
dilute with respect to components 3 and 4 in the mixed 
solvent and does not include the excess Gibbs energy 
due to the nonideality of the solute-free solvent mixture. 

The reference fugacity of component 3 is Henry's 
constant for 3 in the mixed solvent; and similarly for 
component 4. The reference fugacity of component 1 
(or 2) is not the fugacity of the pure liquid, but is modi­
fied by the activity coefficient of component 1 (or 2) 
in the solute-free mixed solvent (see Equations 65 and 
66). 

According to our solution model, we write for the 
excess Gibbs energy due to interactions of solute mole­
cules in the mixed solvent: 

gE*(MS) 

RT(Xlql + X2q2 + xsqa + X4q4) 

- aSS(MS)<I>s2 - a«(MS) <1>42 - 2 aS4(MS)<I>s<l>4 (43) 

where 

qt = vet l1 + (7]S(MS)<I> s2 + 7]4(MS)<I>4
2 + 

2 7]34(MS)<I>S<I>4)] (i = 1, 2, 3, 4) (44) 

and subscript (MS) refers to mixed solvent. Here, 
aS3(MS) is the self-interaction constant of solute molecules 
3 in the environment of mixed solvent, and 7]3(MS) is the 
dilation constant of solute molecules 3 in the mixed 
solvent. By introducing as before (6) the assumptions 

aS4(MS) = VaSS(MS)a44(MS) (45) 

7]a4(MS) = V7]S(MS)7]4(MS) (46) 

Equation 43 can then be rearranged to read 

gE*(MS) / / = - (a33(MS)1 2<1>s + a44(MS)12<1>4)2 X 
RT 

[1 + (7]S(MS//
2

<1>s + 7]4(MS)1f2<1>4)2] (XIVe, + 
X2Ve, + XaVe, + X4Ve.) (47) 

The self-interaction constant of solute molecules in an 
environment of mixed solvent is assumed to be given by 
a linear average in the solute-free solvent mole fraction; 
results are not sensitive to this combination rule since, 
in most cases, the components in the mixed solvent are 
similar in their behavior toward the particular solute. 
Thus, 
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(48) 

and similarly, 

In (11~(;S)r2 = /~ (TS~S)*) (49) 

where 

T * - <I>lTS(t)* + <I>2T 3(2)* 

8 (MS) - <I>l + <I>2 (50) 

and/~ is given by Equation 36. The activity coefficients 
can be obtained by differentiating Equation 47. They 
are: 

In 'Yl(MS>,pr) = Ve, {<I>a2(1 + 3 <I>~2 + 2 DM1<I>~) -

2 AM1<I>a(1 + <I>~2)} (51) 

In 'Y2(MS) (pr) = ve,{<I>a2(1 + 3 <I>~2 + 2DM2<I>~)-
2 AM2<I>a(1 + <I>~2)} (52) 

In 'Ys* (MS) (p,,) = ve,{ <I>a2(1 + 3 <I>~2 - 2 11S(MS//2<I>~) 

2 a33(Ms/,2<I>a(1 + <I>~2)} (53) 

In 'Y'*(MS)(pr) = ve. {<I>a2(1+ 3 <I>~2 - 2 114 (MS) I/2<I>~) 

2 a44 (MS//2<I>a(1 + <I>~2)} (54) 

where 

AMI = 

<I>a = a33(MS)I/2<I>3 + a44(MS)1I2<I>, 

<I>" = 113 (MS)1I2<I>s + 114 (MS)1/2<I>, 

(a33(1)1/2 - aSS(MS)I/2)<I>s + (a44(1)1/2 - a44 (MS)I/2)<I>4 

<I>1 + <I>2 

(/ = 1,2) 

(55) 

(56) 

(57) 

(/ = 1, 2) (58) 

DS - *1/2 [()(11/11*)1/2] 
1 - 11j ()(T*/T) T* =T;(MS)* 

(60) 

The fugacity of each component is given by: 

(61) 

(62) 

(63) 

(64) 
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The reference fugacities /t(MS)oCP) and h(MS)O(r) in Equa­
tions 61 and 62 are given by (reference 26) : 

(65) 

h(MS)O(P,) = 'Y2(SF)(pr)/ pure 2(P") (66) 

where 'Yl(SF)(pr) and 'Y 2(~(pr) are the activity coefficients 
of components 1 and 2 in the solute-free (SF) mixed 
solvent, as given by: 

In 'Yl(SF) (pr) = Vela12~22 

In 'Y2 (SF)(pr) = ve,a12'1t1
2 

(67) 

(68) 

where al2 is the interaction constant of solvent molecules 
1 and 2, and 'It is the solute-free solvent volume frac­
tion, 

(69) 

As shown elsewhere (26), Henry'S constants H3(MS) (pr ) 

and H 4(MS ) (pr) are related to Henry'S constants in the pure 
solvents by 

In HS(MS ) (pr) = 'It 1 In H 3(1) (pr) + ~2 In H S(2) (pr) -

VClaI2~1~2 (70) 

In H 4(MS ) (pr) ~lln H 4(1) (pr) + 'lt21n H 4(2)(pr) -

v",a12'1t1W2 (71") 

Figure 6 presents calculated activity coefficients for 
the ternary system n-pentane(1)-propane(2)-methane­
(3) at 220 0 F ; only binary constants were used in these 
calculations. At 220 0 F, there are one solvent, n­

pentane, and two solutes, propane and methane. This 
case is the same as the one discussed previously (6). 
In this case the mixed-solvent reference state discussed 
above automatically reduces to the simple case of a 
single-reference solvent discussed before (6). 

C. Liquid-Phase Activity Coefficients: Effect of Pressure 

As indicated in the previous section, a useful thermo­
dynamic analysis of high-pressure vapor-liquid equilibria 
requires information on the effect of pressure on liquid­
phase fugacities; this information is given by partial 
molar volumes in the liquid mixture. 

At low or moderate pressures, liquid-phase activity 
coefficients are weakly dependent on pressure and, as 
a result, it has been customary to assume that, for prac­
tical purposes, activity coefficients depend only on tem­
perature and composition. In many cases this is a 
good assumption but for phase equilibria at high pres­
sures, especially for those near critical conditions, it can 
lead to serious error. 

When the standard-state fugacity is defined at a con­
stant pressure, for any component i, the pressure de-



Figure 6. Calculated activity coejJicients for the ternary system n­
pentane(7)-propane(2)-methane(3) at 2200 F. 

pendence of the activity coefficient 'Y~ is given exactly 
by: 

(
) In 'Y~) 

()P T • ., 

(72) 

At high pressures in the critical region, v~ is usually a 
strong function of composition, especially for heavy 
components where v~ frequently changes sign as well as 
magnitude. 

Experimental data for partial molar volumes are 
rare for binary systems and for multicomponent systems 
there are essentially none. Since thermodynamic 
analysis or prediction of multicomponent high-pressure 
phase equilibria requires partial molar volumes, we 
require a reliable method for calculating partial molar 
volumes from a minimum of experimental information. 

Partial molar volume from an equation of state. 
The partial molal volume of component k in a mixture 
of N components is defined by 

- ()8 VA:= -
()nt P.T,ni(iFk) 

(73) 

The partial molar volume can be evaluated from a 
suitable equation of state for the liquid mixture. Since 
most equations of state are explicit in pressure rather 
than in volume, it is convenient to rewrite Equation 
73: 

VA: = = l(x1 ••••• , T, 11) (74) 

With an equation of state, Equation 74 gives Vt as a 
function of the composition, temperature, and molar 
volume 11 of the liquid mixture. Pressure does not 
appear explicitly in Equation 74 but is implicit in the 
volume which depends on the pressure. 

For practical applications in vapor-liquid equilibria, 
we require partial molar volumes at saturation; there­
fore, we need the saturated molar volume of the liquid 
mixture in Equation 74. The saturated molar volume 
of a liquid mixture can be calculated by extending to 
mixtures the corresponding-states correlation ofLyckman 
and Eckert (77) who slightly revised Pitzer's tables (23) 
for the saturated liquid volume of pure substances for 
the reduced temperature region 0.56-1.00. Pseudo­
critical rules are required for applications to mixtures. 
Such rules have been proposed (7) for the region in which 
the pseudoreduced temperature of the mixture is less 
than 0.93. In the critical region (T R > 0.93), it has 
been found necessary to modify the pseudocritical rules 
in order that they converge to the true critical constants 
of the mixture at the critical point. To this end, we 
have developed correlations for true critical tempera­
tures and volumes of mixtures and, also, an equation­
of-state method for calculating the true critical pressures 
of mixtures. For reduced temperatures less than 0.56 
other modifications are required. Details and results 
of these calculations are given elsewhere (7, 26). 

In Equation 74, besides the saturated molar volume 
of the liquid mixture, we need an explicit form of the 
function f. For this, we need an equation of state for 
liquid mixtures. 

Equation of state for liquid mixtures. For nonpolar 
liquids, an equation of the van der Waals type provides 
a reasonable description of volumetric properties. 
Since the Redlich-Kwong equation (33) represents a 
useful modification of the van der Waals equation, we 
propose to use this equation for liquid mixtures with 
certain alterations. The Redlich-Kwong equation of 
state is given by Equation 4, and, for any pure fluid, 
the two constants a and b can be related to the critical 
properties of that fluid by Equations 5 and 6. As noted 
in Section A, if the conditions at the critical point are 
imposed, na = 0.4278 and nb = 0.0867 for all fluids. 
Adoption of these values is equivalent to fitting the 
equation of state to derivatives in the critical region 
which, although the most sensitive, does not provide 
the best fit over a wide range of conditions. This is par­
ticularly true when the equation is applied to the liquid 
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Figure 7. Partial molal volumes in the saturated liquid phase of the 
n-butane--carbon dioxide system at 1600 F. 

Figure 8. Partial molar volumes in the saturated liquid phase of the 
propane--methane system at 700 0 F. 
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phase. If we accept universal values for Oa and Ob' 
we are, in effect, subscribing to a two-parameter theorem 
of corresponding states. However, Pitzer and others 
(19, 23, 34, 37) have shown that the theorem of corre­
sponding states requires a third parameter to be appli­
cable to a wide class of substances. We propose, there­
fore, for each pure liquid, to fit the Redlich-Kwong 
equation to the P-V-T data of the saturated liquid and 
to evaluate the best Oa and Ob for each pure component. 
Fortunately, such data are readily available; results 
are given elsehwere (26) for 19 common liquids. They 
differ slightly from the universal values and show a trend 
with respect to an acentric factor. 

For application to mixtures, we use the same mixing 
rules as given by Equations 7 through 15, except that the 
cube-root average for vetJ' Equation 13, is replaced by the 
arithmetic mean of Vet and veJ; this is done to weight 
the larger molecule slightly more heavily in the liquid 
phase. The binary constant kiJ' which represents the 
deviation from the geometric mean for TeiJ' is the same 
for both vapor and liquid phases; to a good approxima­
tion kiJ is independent of the temperature, density, and 
composltlon. Special precautions are needed for mix­
tures containing hydrogen or helium (26). 

Partial molar volumes. The partial molar volume 
can be obtained after performing the partial differentia­
tion indicated in Equation 74: 

2 (t Xia"i) _ _ Q_b_,,_ 
RT (1 + b") i V + b 
~ ~ - v(v + b)Tl/2 

ii" = RT Q [2 v + b ] 
(v - b)2 - TI/2 v2(v + b)2 

(75) 

With v, the saturated liquid molar volume of the mix­
ture, calculated from a corresponding states correlation, 
the partial molar volume of each component in a multi­
component liquid mixture can be readily calculated 
from Equation 75. A computer program for performing 
the calculation is given elsewhere (26). 

Figures 7 and 8 show calculated partial molar volumes 
in the saturated liquid phase of the systems n-butane­
carbon dioxide and propane-methane, including the 
critical region. The calculated values are compared 
with those computed from the volumetric data of Sage 
and Lacey (38); agreement between calculated and 
experimental values is quantitative for both systems. 
The partial molar volumes of the lighter component 
(supercritical in these cases) and the heavier component 
show very different behavior in the critical region even 
for a system as simple as propane-methane. T~e partial 
molar volume of the lighter component approaches a 
large positive value due to its "dilative" effect, and that 
of the heavier component approaches a large negative 



Figure 9. Schematic diagram of bubble-pressure program 

value, due to its "condensing" effect. As a result, 
pressure has exactly opposite effects on the activity 
coefficients of the lighter component and the heavier 
component, as indicated by Equation 72. The simple 
approximation of using partial molar volumes at infinite 
dilution leads to large error near the critical region. 

Also shown in Figure 8 are the partial molar volumes 
calculated with the universal values Oa = 0.4278 and 
Ob = 0.0867. The results are much less satisfactory, 
indicating the need for evaluating Oa and Ob for each 
pure saturated liquid. 

All of the above equations for the calculation of par­
tial molar volumes in saturated liquid mixtures are 
applicable to multicomponent systems without any 
further assumptions. 

With partial molar volumes, the effect of pressure on 
liquid-phase activity coefficients can be taken into 
account. By separating the effect of pressure from that 
of composition, experimental liquid-phase activity co­
efficients can be subjected to rigorous thermodynamic 
analysis. Such analysis permits meaningful intepreta­
tion and correlation of binary, high-pressure, vapor­
liquid equilibrium data and facilitates prediction of 
multicomponent-phase behavior. 

D. Prediction of Mulicomponent-Phase Equilibria 

For vapor-liquid equilibria of an N-component sys­
tem, the variables of interest are the temperature, total 
pressure, N - 1 independent liquid-phase mole fractions 
and N - 1 independent vapor-phase mole fractions. 
Since there are 2 N variables but only N variables may 

be independently specified, the other N variables must be 
determined by solving the N simultaneous equations. 
They are the N equations of equilibrium: 

for i = 1, 2, ... , N (76) 

In the N equations of equilibrium expressed in Equa­
tion 76, the vapor-phase fugacities are given by: 

it = fl'tYJ' (77) 

and the liquid-phase fugacities are given by: 

• • (P - pr)v,L 
i,L = 'Y/P )xt//(P) exp (78) 

RT 

The solution of the N equations of equilibrium must 
satisfy the two stoichiometric relations 

(79) 

and 

(80) 

The phase-equilibrium calculations most often encoun­
tered in the design of separation processes are bubble­
point and dew-point calculations. In the first case, 
pressure (or temperature) and all of the liquid-phase 
mole fractions are given; the temperature (or pressure) 
and the vapor-phase mole fractions are to be calculated. 
In the second case, pressure (or temperature) and all 
of the vapor-phase mole fractions are given, and the 
temperature (or pressure) and the liquid-phase mole 
fractions are desired. The calculations involve the 
simultaneous solution of the N equations given by Equa­
tion 76 which satisfies Equations 79 and 80. These 
calculations are most conveniently performed by itera­
tion schemes. 

The solution of each of these four problems involves 
the same thermodynamic quantities and relationships; 
only the order of calculation and the convergence 
technique are different. It is, therefore, convenient to 
calculate those thermodynamic quantities in separate 
subroutines which can then be used with all of the main 
programs. The fugacity coefficients are calculated in 
subroutine PHIMIX, the activity coefficients 'Y(po) 

in subroutine ACTCO, the reference fugacities in the 
subroutine RSTATE, and the partial molar volumes, 
V- L are calculated in subroutine VOLPAR. Details ( , 
of the computer programs are given elsewhere (26). 

BUBL P program. The main program, BUBL P, 
performs a bubble pressure calculation. The tempera­
ture and the liquid-phase mole fractions are given. 
The program finds the equilibrium pressure and vapor­
phase mole fractions. 

Figure 9 shows a schematic diagram of the method 
of solution used in the BUBL P program. The itera-

VOL 6 0 N O. 3 MAR CHI 9 6 8 45 



Figure 70. Vapor-liquid equilibrium constants fOT the n-pentane(7)­
propane(2)-methane(3) system at 700 0 F. 

Figure 77. Vapor-liquid equilibrium constants fOT the n-pentane(7)­
propane(2)-methane(3) system at 2200 F. 
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tion scheme used is essentially the same as that discussed 
elsewhere (27). Data are read in by subroutine INPUT. 
Initial guesses for pressure and fugacity coefficients are 
then made for the first iteration. It is important that 
the solution be always approached from the ideal-gas 
side--Le., a sufficiently low pressure and 11'1 = 1. Use 
of an unreasonably high pressure as the first guess may 
cause divergence due to the large effect of a large Poyn­
ting correction. For this reason, each bubble-pressure 
calculation must always start from a low-pressure first 
guess; it is important not to use the result from a pre­
vious, unrelated bubble-pressure calculation which may 
have converged to a very high equilibrium pressure. 
We arbitrarily set the first guess of pressure at 100 psia. 
The speed of convergence is essentially independent of 
this value; however, neither a value of zero nor a very 
high value should be used. 

N ext, the main program reads in the known variable 
T and all x/so Subroutines RSTATE, ACTCO, and 
VOLPAR and then called to calculate those thermo­
dynamic quantities which depend only on the known 
temperature and liquid-phase compositions. 

Calculation of the liquid-phase fugacities begins the 
loop of iteration. The vapor-phase compositions are 
calculated, for the first time, by 

(81) 

and pressure is calculated by 

(82) 

The new pressure is then compared to the former value 
and, if it has changed, the vapor-phase fugacity co­
efficients (subroutine PHI MIX) are recalculated using 
the new pressure and vapor-phase compositions (after 
normalizing by SUMY). The loop is then re-entered 
by the recalculation of liquid-phase fugacity using Equa­
tion 78. 

When an unchanging value of the pressure is achieved 
(within some small tolerance) the stoichiometry };Yf 

= 1 is tested. Usually this is satisfied when the pressure 
has attained an unchanging value. If Uf is not satis­
fied, the vapor-phase fugacity coefficients are recal­
culated and the loop is re-entered at the calculation 
of vapor-phase . compositions. When the two condi­
tions of unchanging pressure and U1 are met, the equa­
tions are all satisfied and the equilibrium results are 
printed out. Usually, convergence is attained after 
several iterations, taking a total time of about half a 
second on an IBM 7094 computer (for a ternary system). 

Figures 10 to 13 and Tables IV to IX give examples of 
predicted bubble pressures and vapor compositions for 
some multicomponent systems uging binary data only. 
In the calculation for 'the ternary system acetylene-



Figure 72. Calculated vapor-liquid equilibrium constants and bubble 
pressures for the acetylene ( 7)-ethane(2)- ethylene(3) system at 40° F. 

ethane-ethylene, all three components are treated as 
solvents, using only one parameter, a, per binary, as 
explained in Section B. 

Very near the critical point of the mixture, for the 
region 0.97 ~ T R ~ 1.0 for the liquid mixture, calculated 
results are extremely sensitive to small errors in any of 
the thermodynamic quantities involved. Results for 
this hypersensitive region can be best obtained by inter-

Figure 73. Calculated vapor-liquid equilibrium constants and bubble 
pressures for the hydrogen sulfide(7)-carbon dioxide(2)-methane(3) 
system at 100° F. 

polating between calculations at a lower T R and the 
known condition at the critical point-i.e., K1 = 1 for 
each component and the pressure is equal to the critical 
pressure of the mixture. Correlations of critical proper­
ties of mixtures are given elsewhere (7, 26). 

In general, agreement between predicted and experi­
mental results is very good. However, in a few in­
stances, significant disagreement was noted, especially 

Table IV. Comparison of Calculated and Experimental Results from Program BUBL P 
n-Pentane( 1 )-Propane(2)-Methane(3) System 

Given Calculated Experimental" 
T, 0 R Xl X, X3 P, psia YI Y2 Y3 P, psia YI y, Ya 

559.7 0.678 0.170 0.152 495 0.046 0.086 0.868 500 0.049 0.085 0.866 

559.7 0.555 0.139 0.306 987 0.040 0.056 0.903 1000 0.043 0.056 0.901 

559.7 0.442 0.110 0.448 1448 0.049 0.049 0.902 1500 0.051 0.049 0.900 

559.7 0.315 0.079 0.606 1973 0.068 0.047 0.885 2000 0.083 0.046 0.871 

619.7 0.701 0.175 0.124 515 0.113 0.143 0.744 500 0.112 0.145 0.743 

619.7 0.587 0.147 0.266 1019 0.093 0.086 0.821 1000 0.094 0.080 0.826 

6197 0.482 0.121 0.397 1499 0.103 0.069 0.828 1500 0.103 0.068 0.829 

619.7 0.363 0.091 0.546 2070 0.130 0.057 0.813 2000 0.138 0.073 0.789 

679.7 0.730 0.182 0.088 495 0.243 0.227 0.529 500 0.238 0.215 0.547 

679.7 0.616 0.154 0.230 1000 0.186 0.129 0.685 1000 0.181 0.122 0.697 

679.7 0.501 0.125 0.374 1443 0.185 0.093 0.722 1500 0.206 0.099 0.695 
Q References 4, 11. 
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T,O R 

4247 

4247 

424.7 
424.7 

459.7 

459.7 

4597 

459.7 

499.7 

4997 

4997 

499.7 

499.7 

Table V. Comparison of Calculated and Experimental Results from Program BUBL P 
Acetylene( 1 )-Ethane(2)-Ethylene(3) System 

Given 

0.187 0.330 

0.061 0.316 

0.084 0.104 
0.142 0.630 

0.060 0.204 

0.025 0.437 

0.143 0795 

0.056 0.464 

0.074 0.767 

0.031 0.741 

0.843 0.082 

0.192 0.658 

0.042 0.426 

0.483 

0.623 

0.812 
0.228 

0.736 

0.538 

0.062 

0.480 

0.159 

0.228 

0.075 

0.150 

0.532 

p. plio 

197.4 

199.4 

218.9 
170.8 

356.2 

316.9 

277.0 

315.8 

466.8 

461.8 

510.5 

5157 

542.0 

Calculated 

Yl Y2 

0.203 

0.073 

0.084 
0.205 

0.069 

0.035 

0.237 

0.079 

0.113 

0.048 

0771 

0.252 

0.055 

0.252 

0.230 

0.075 
0.501 

0.156 

0.346 

0.685 

0.370 

0.694 

0.673 

0.120 

0.579 

0.366 

y, 

0.545 

0.697 

0.841 
0.294 

0.775 

0.619 

0.078 

0.551 

0.193 

0.279 

0.109 

0.169 

0.579 

P, plio 

200.3 

200.3 

220.0 
175.1 

359.9 

320.2 

280.1 

319.7 

465.5 

464.8 

514.4 

514.4 

564.4 

Experimental" 

Yl Y2 

0.202 

0.084 

0.084 
0.206 

0.065 

0.034 
0.220 

0.077 

0.113 

0.046 

0778 

0.242 

0.050 

0.260 

0.234 

0.080 
0.511 

0.157 

0.347 
0.684 

0.374 

0.698 

0.677 

0.114 

0.590 

0.363 

y, 

0.538 

0.682 

0.836 
0.283 

0.778 

0.619 

0.096 

0.549 

0.189 

0.277 

0.108 

0.168 

0.587 

4997 0.257 0.493 0.250 558.6 0.299 0.432 0.269 . 564.4 0.286 0.441 0.273 

4997 

499.7 

499.7 

499.7 

0.316 0.202 

0.500 0.041 

0.104 0.067 

0.224 0.032 
.. References J 5, J 8. 

0.482 

0.459 

0.829 

0.745 

619.6 

621.8 

650.1 

668.6 

0.319 

0.448 

0.114 

0.224 

0.182 

0.043 

0.058 

0.029 

0.499 

0.509 

0.828 

0747 

614.4 

614.4 

664.4 

664.4 

0.310 

0.460 

0.103 

0.217 

0.188 

0.047 

0.061 

0.032 

0.502 

0.493 

0.836 

0751 

Table VI. Comparison of Calculated and Experimental Results from Program BUBL P 

Propane( 1 )-Ethane(2)-Methane(3) System 

T. 0 R 

309.7 

309.7 

359.7 

359.7 

359.7 

409.7 

4097 

409.7 

409.7 

459.7 

459.7 

Given 

0.500 
0.153 

0.570 
0.281 

0.262 

0.607 

0.200 

0.293 

0.145 

0.258 

0.319 

0.320 

0.483 

0.242 

0.268 

0.523 

0.109 

0.089 

Xa 

0.242 
0.528 

0.110 

0.236 

0.496 

0.125 

0.277 

0.598 

0.766 

0.139 0.724 0.136 

0.421 0.188 0.391 

Calculated 
p. plio 

97 0.003 
191 0.001 

103 0.021 

202 0.007 

400 0.006 

202 0.054 

408 0.014 

816 0.032 

968 0.031 

0.025 
0.021 

0.115 

0.102 

0.042 

0.148 

0.185 

0.048 

0.076 

Ya 

0.972 
0.978 

0.864 

0.891 

0.951 

0.798 

0.801 

0.920 

0.893 

407 0.026 0.482 0.492 

805 0.075 0.105 0.821 

Experimental" 
p. plio 

100 0.003 
200 0.002 
100 0.025 

200 0.009 
400 0.007 

200 0.056 

400 0.013 

800 0.036 

1000 0.047 

0.028 
0.024 

0.110 

0.098 

0.036 

0.140 

0.188 

0.036 

0.050 

0.969 
0.974 
0.865 

0.893 
0.956 

0.804 

0.799 

0.928 

0.903 

400 0.028 0.485 0.487 

800 0.082 0.094 0.824 

459.7 0.308 0.1 07 0.585 1079 0.086 0.075 0.83.9 11 00 0.099 0.063 0.838 

4597 

509.7 

509.7 

509.7 

509.7 

0.260 0.030 0.710 

0.811 0.160 0.027 

0715 0.175 0.110 

0.593 

0.442 

0.121 

0.169 

0.286 

0.389 

1221 0.107 0.027 0.866 

200 0.432 0.290 0.278 

401 0.246 0.188 0.566 

801 0.179 

975 0.156 

0.093 0.728 

0.129 0.715 

1300 0.146 0.025 0.829 

200 0.441 0.284 0.275 

400 0.250 0.193 0.557 

800 0.187 0.091 

1000 0.167 0.126 

0.722 

0.707 

509.7 0.463 0.037 0.500 1225 0.209 0.030 0.762 1200 0.214 0.030 0.756 
.. Reference 29. 
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Table VII. Comparison of Calculated and Experimental Results from Program BUBL P 

Ethane( 1 )-Methane(2)-Hydrogen(3) System-

Given Calculated Experimental-

T,o R XI X2 Xa P, psia YI Y2 Ya P, psia Yl Y2 Ya 

209.3 0.720 0.275 0.0046 199.4 0.0002 0.0570 0.9428 195.7 0.00020 0.0431 0.957 

209.3 0.353 0.628 0.0192 520.7 0.0001 0.0490 0.9509 502.0 0.00006 0.0461 0.954 

209.3 0.328 0.597 0.0754 2436 0.0002 0.0419 0.9579 1990 0.00016 0.0357 0.964 

209.3 0.753 0.211 0.0362 2037 0.0002 0.0186 0.9812 1985 0.00035 0.0137 0.986 

209.3 0.904 0.0788 0.0168 986.8 0.0001 0.0078 0.9921 981.9 0.00022 0.0054 0.995 

209.3 0.905 0.0637 0.0312 2133 0.0002 0.0063 0.9935 1965 0.00026 0.0044 0.996 

259.4 0.451 0.518 0.0313 712.8 0.0016 0.1495 0.8489 749.6 0.0017 0.136 0.862 

259.4 0.505 0.438 0.0573 1420 0.0016 0.0975 0.9009 1490 0.00161 0.0910 0.907 

259.4 0.503 0.440 0.0574 1418 0.0016 0.0979 0.9005 1990b 0.00206 0.0535b 0.944 

259.4 0.673 0.280 0.0473 1476 0.0018 0.0669 0.9313 1500 0.00210 0.0540 0.944 

259.4 0.699 0.267 0.0340 1061 0.0018 0.0725 0.9258 1013 0.00196 0.0633 0.935 

309.7 0.768 0.203 0.0291 740.7 0.0143 0.1457 0.8400 748.7 0.0137 0.130 0.856 

309.7 0.780 0.162 0.0584 1500 0.0108 0.0768 0.9124 1500 0.0114 0.0695 0.919 

309.7 0.829 0.100 0.0712 1986 0.0102 0.0422 0.9475 1980 0.0109 0.0356 0.953 

309.7 0.901 0.0725 0.0266 745.5 0.0146 0.0534 0.9320 749.0 0.0140 0.0450 0.941 

309.7 0.354 0.624 0.0222 489.5 0.0137 0.5348 0.4515 517.4 0.0141 0.492 0.494 

309.7 0.517 0.417 0.0660 1234 0.0106 0.2108 0.7786 1485 0.0122 0.188 0.800 

359.5 0.544 0.444 0.0122 528.1 0.0683 0.6543 0.2775 521.1 0.0816 0.696 0.222 

359.5 0.514 0.411 0.0745 1557 0.0410 0.3038 0.6552 1410 0.047 0.318 0.635 

359.5 0.549 0.368 0.0827 1728 0.0398 0.2580 0.7022 1790 0.0469 0.264 0.689 

359.5 0.738 0.238 0.0241 643.3 0.0644 0.3180 0.6176 699.2 0.0656 0.318 0.616 

433.0 0.590 0.395 0.0148 813.1 0.2359 0.6427 0.1214 837.7 0.240 0.645 0.115 

433.0 0.731 0.210 0.0590 1162 0.1975 0.2992 0.5033 1200 0.204 0.300 0.496 

433.0 0.704 0.228 0.0676 1283 0.1880 0.3027 0.5093 1400 0.187 0.288 0.525 

433.0 0.665 0.245 0.0901 1578 0.1727 0.2850 0.5423 1605 0.187 0.297 0.516 

459.7 0.798 0.117 0.0845 1383 0.2698 0.1668 0.5634 1520 0.308 0.169 0.523 

459.7 0.640 0.300 0.0595 1287 0.2929 0.4015 0.3057 1217 0.346 0.406 0.248 

459.7 0.632 0.266 0.102 1773 0.2721 0.3072 0.4207 1610 0.319 0.339 0.342 
- Reference 9. ~ Experimental data seem to be in error; compare with the line immediately above. See discussion in the text. 

in the pressure. While it is not possible to explain such 
disagreement with certainty, close scrutiny of the experi­
mental data suggests that for some of the reported points 
there may be appreciable experimental error. For 
example, in the system ethane-me thane- hydrogen at 
-200° F, the measured pressure is 1490 psi a when the 
liquid composition is 50.5 mole per cent ethane, 43.8 
mole per cent methane, 5.73 mole per cent hydrogen. 
However, at the same temperature and for a very 
similar liquid composition (50.3 mole per cent ethane, 
44.0 mole per cent methane, 5.74 mole per cent hydro­
gen) the measured pressure is 1990 psia. I t is most un­
likely that such a small change in liquid composition 
could produce such a large change in the total pressure. 
The reported vapor composition in the first case is 0.161 
mole per cent ethane and 9.10 mole per cent methane; 
in the second case, it is 0.206 mole per cent ethane and 
5.35 mole per cent methane. It is not likely that such a 

small change in liquid composition could account for a 
factor of nearly 2 in the K value of methane. Our 
calculations suggest that the experimental results for the 
first case are more reliable than those for the second case. 

In the binary system hydrogen sulfide-carbon di­
oxide at 100° F, the measured pressure is 600 psia when 
the liquid composition is 84 mole per cent hydrogen 
sulfide and 16 mole per cent carbon dioxide. However, 
in the ternary system hydrogen sulfide- carbon dioxide­
methane at 100° F, the measured pressure is again 600 
psia even though the liquid now contains 2 mole per 
cent methane with 81 mole per cent hydrogen sulfide 
and 17 mole per cent carbon dioxide. Our calculated 
pressure for this ternary mixture is 744 psia. Since 
methane is a highly supercritical component at 100° F, 
we would expect that introduction of 2 mole per cent 
methane raises the total pressure beyond that for the 
methane-free binary system. Uncertainties in experi-
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mental results are unfortunately, not rare, especially in 
ternary (and higher) systems, because of severe experi­
mental problems. 

Experimental and observed results for the five-com­
ponent system (Table IX) are generally in good agree­
ment. When the liquid phase is predominantly n­

pentane, the predicted K factor for methane is a little 
lower than that reported by De Priester (10). Our 
model parameters for methane-n-pentane were ob­
tained from the very good data of Sage and Lacey (38) 
which reproduce extremely well the methane-n-pentane, 
and methane-propane- n-pentane systems. It appears 
that De Priester's extrapolated data for the n-pentane­
methane system disagree somewhat with those of Sage 
and coworkers. 

BUBL T program. The main program, BUBL T, 
performs a bubble-temperature calculation. The pres­
sure and the liquid-phase compositions are the known 
variables. The program calculates the equilibrium 
temperature and vapor compositions. Since the tem­
perature is unknown, all the temperature-dependent 
thermodynamic quantities enter into the iterative loop. 

After the data have been read in by INPUT, the first 
guess of temperature is made by utilizing the known 
liquid-phase compositions and total pressure, using 
approximately seven tenths of the pseudocritical tem­
perature of the mixture. The temperature-dependent 
quantities are then calculated in subroutines RSTATE, 
ACTCO, and VOLPAR. The liquid-phase fugacities 
are then calculated by Equation 78, and vapor-phase 
compositions are calculated for the first time, using 'Pt = 
1. These vapor-phase compositions (after normaliza-

tion) are then immediately used to recalculate 'Pt (sub­
routine PHIMIX) and new Yt's are calculated. These 
calculations are repeated until ~Yt attains a constant 
value. The stoichiometric criterion L Yt = 1 is then 
tested and, if not satisfied, the deviation from unity is 
used to readjust the temperature. The loop is then 
entered at RSTATE and the iteration repeated until 
SUMY is constant and equals unity. When these 
conditions are satisfied, the problem is solved and the 
equilibrium results are printed out. Table X shows 
results of predicted ternary bubble temperatures and 
compositions calculated from binary data only. 

Conclusion 

In this work, we have described a method for reducing 
binary vapor-liquid equilibrium data to thermodynami­
cally significant functions. For describing the vapor 
phase we use a well-known, two-parameter equation of 
state modified for mixtures to take into account devia­
tions from the geometric mean approximation. For the 
liquid phase, we define the excess Gibbs energy with 
reference to a mixture which follows Henry's law; 
thereby we avoid the use of any arbitrary hypothetical 
standard states. The composition dependence of the 
activity coefficients is given by an equation similar to 
that of van Laar, modified to take into account the ten­
dency of liquid mixtures to dilate in the critical region. 
Most important, we calculate the pressure dependence 
of the activity coefficient with realistic estimates of the 
liquid-phase partial volumes; these quantities, more 
than any others, provide the key to progress in high­
pressure thermodynamics. 

Table VIII. Comparison of Calculated and Experimental Results from Program BUBL P 
Hydrogen Sulfide( l)-Carbon Dioxide(2)-Methane(3) System at 100 0 F 

Given Calculated Experimentala 

XI X2 X3 P, psia Yt Y2 Y3 P, psia YI Y2 Y3 

0.840 0.160 0.000 624 0.6259 0.3741 0.000 600 0.608 0.392 0.000 

0.810 0.170 0.020 744 0.5551 0.3329 0.1120 600b 0.660 0.222 0.118 

0.937 0.044 0.0190 605 0.6996 0.1190 0.1814 600 0.684 0.115 0.201 

0.891 0.1 01 0.008 601 0.6726 0.2593 0.0681 600 0.644 0.259 0.097 

0.870 0.122 0.008 627 0.6430 0.2950 0.0620 600- 0.630 0.317 0.053 

0.967 0.000 0.033 657 0.6839 0.000 0.3161 600e 0.710 0.000 0.290 

0.955 0.029 0.016 564 0.7439 0.0850 0.1712 600 0.690 0.066 0.244 

0.891 " 0.000 0.109 1162 0.502 0.000 0.498 1200e 0.049 0.000 0.510 

0.843 0.042 0.115 1177 0.4856 0.0613 0.4531 1200 0.470 0.095 0.435 

0.747 0.137 0.1 16 1121 0.4614 0.1801 0.3585 1200 0.445 0.201 0.354 

0.683 0.213 0.104 1050 0.4494 0.2675 0.283 I 1200 0.418 0.278 0.304 
a Reference 35. 
b Experimental data seem to be in error; compare with line immediately above. See discussion in the text. 
e These binary data are somewhat in disagreement with those of Sage's which, in turn, are given correctly by the calculations. 
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Table IX. Comparison of Calculated and Experi­
mental Results from Program BUBL P 

n-Pentane( 1 )-n-Butane(2)-Propane(3)-Ethane(~ 
Methane 31" 

Given Calculated Experimental 
T, 0 F 100 P, psia 289 P, psla 289 

Xl 0.488 YI 0.0424 Yl 0.033 
X~ 0.213 Y2 0.0526 Y2 0.044 
X3 0.120 Y3 0.0877 Y3 0.091 
X4 0.115 Y4 0.2371 Y4 0.233 
Xs 0.064 Ys 0.5802 Y5 0.599 

T, OF 100 P, psia 85 P, psia 96 

Xl 0.802 YI 0.1678 Yl 0.129b 

X2 0.114 Y2 0.0733 Y2 0.068 
X3 0.045 Ya 0.0916 Y3 0.089 
X4 0.023 Y4 0.1499 Y4 0.144 
Xs 0.016 Ys 0.5175 Ys 0.570b 

T, OF 200 P, psia 771 P, psia 782 

Xl 0.356 Yl 0.0913 Yl 0.068 
X2 0.222 Y2 0.1076 Y2 0.097 
Xa 0.160 Ya 0.1417 Ya 0.130 
Xi 0.126 Y4 0.1860 Y4 0.194 
Xs 0.136 Yo 0.4734 vo 0.511 

" Reference J O. 
b See discussion in the text. 

The main use of our equations for data reduction 
follows from their generalization to multicomponent 
mixtures. With the help of an electronic computer, 
it is possible to make good estimates of multicomponent 
phase behavior including the critical region using only 
the results of binary data reduction. Details of such 
calculations, including computer programs, are pre­
sented in a forthcoming monograph (26). 

Since our method requires a considerable amount of 
binary data, our calculated results for binary systems 
are almost always more accurate than those obtained 
by other calculation methods. In a recent review 
(7) it was shown that common calculation methods 
can predict K factors for binary systems containing 
paraffins and olefins with root-mean-square deviations 

averaging 7 to 20% and sometimes more, depending 
on the particular method and on the conditions; in 
the critical region errors are often much larger. 

For systems containing nitrogen, carbon dioxide, 
acetylene, hydrogen sulfide, or hydrogen, common 
computational methods frequently give large errors of 
the order of 20% and sometimes errors exceeding 100% 
(7). 

Our method of calculation for binary systems gives K 
factors generally accurate to within a root-mean-square 
deviation of 3 to 4% provided some good binary experi­
mental data are available for data reduction. This low 
root-mean-square deviation is only slightly larger for the 
critical region and for systems containing one or more 
of the frequently encountered components in petroleum 
refining outside the paraffin-olefin class. 

While it is difficult to generalize, for multicomponent 
mixtures common calculational methods can predict K 
factors for mixtures contain 'ng paraffins or olefins with 
a root-mean-square deviation of about 15 to 30%, de­
pending on the method and on the conditions (7). 
For systems containing nitrogen, the errors are only 
slightly larger; however, for systems containing carbon 
dioxide, acetylene, hydrogen sulfide, or hydrogen, errors 
are often much larger (7) especially if the Benedict­
Webb-Rubin equation is used or if the Chao-Seader 
correlation is used at low temperatures: 

We estimate that our predicted K factors for multi­
component systems have a root-mean-square deviation 
between 4 and 8% ; the lower figure pertains to systems 
for which there are good binary data and for the region 
not immediately in the critical. The higher figure 
pertains to those systems where binary data are sparse 
and to the region very close to the critical. The general-

Table X. Comparison of Calculated and Experimental Results from Program BUBL T 
n-Pentane( 1 )-Propane(2)-Methane(3) System 

Given Calculated Experimental" 
P, psia x, X2 X 3 T, ° R y, y, Y3 T, ° R y, Y2 Y3 

500 0.533 0.355 0.112 619.0 0.092 0.302 0.606 619.7 0.091 0.297 0.612 

500 0.362 0.543 0.095 619.9 0.069 0.452 0.479 619.7 0.067 0.461 0.472 

500 0.678 0.170 0.152 561.9 0.047 0.087 0.866 559.7 0.049 0.085 0.866 

500 0.384 0.577 0.039 679.0 0.152 0.677 0.171 679.7 0.153 0.680 0.167 

1000 0.443 0.296 0.261 620.1 0.079 0.178 0.743 619.7 0.080 0.168 0.752 

1000 0.298 0.447 0.255 620.3 0.063 0.279 0.658 619.7 0.066 0.277 0.657 

1000 0.555 0.139 0.306 564.2 0.043 0.058 0 .899 559.7 0.043 0.056 0.901 

1000 0.616 0 .154 0.230 680.1 0.187 0.129 0.684 679.7 0.181 0.122 0.697 

1500 0.482 0 .121 0.397 619.9 0.104 0.069 0.828 619.7 0.103 0.068 0.829 

1500 0 .213 0.320 0.467 558.8 0.037 0.176 0.787 559.7 0.046 0.160 0.794 

1500 0.501 0.125 0.374 676.1 0 .195 0.095 0.710 679.7 0.206 0 ,099 0.695 
" References 4, J 1. 
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ity of our method readily permits application without 
serious loss of accuracy to systems containing nonpolar 
(or slightly polar) components outside the paraffin­
olefin class. 

Our calculated results are generally more accurate 
than those using common techniques for two reasons: 
first, our method uses to the fullest possible extent all the 
thermodynamic tools that have recently become avail­
able; of these tools, the new technique for estimating 
liquid partial molar volumes is especially important. 
Second, our method avoids arbitrary hypothetical 
standard states and is based on careful reduction of 
binary experimental data. The literature is already 
rich with binary data and more binary experimental 
results are appearing regularly. The philosophical 
basis of our method follows from our conviction that 
whereas it is extremely difficult to predict phase behavior 
from pure-component data alone, we may expect with 
few exceptions to predict with confidence multicom­
ponent behavior from at least some binary data in addi­
tion to pure-component data, provided we are willing 
to make an effort to take thermodynamics seriously. 

Nomenclature 

H 2(1) 

k ij 

ni 

nT 
N 
NS 
P 
Pe 

Pci; 
pr 
PO 
q 
R 
T 
Te 
Teij 
T* 

v 
V 

x 

" z 

= constants in Redlich-Kwong equation of state 
= binary parameters given by Equations 34 and 35 
= fugacity 
= reference fugacity 
= excess Gibbs energy in symmetric convention 
= excess Gibbs energy in unsymmetric convention 
= excess Gibbs energy . (unsymmetric convention) relative 

to the mixed solvent 
= Henry's constant for solute 2 in solvent 1 
= characteristic constant for i-j interaction 
= number of moles of component i 

total number of moles 
number of components 
number of solvent-components 
total pressure 

= critical pressure 
= critical pressure characteristic of the i-j interaction 

constant reference pressure 
= a constant reference pressure of zero 
= effective molar volume 
= gas constant 
= temperature 
= critical temperature 
= critical temperature characteristic of the i-j interaction 
= characteristic constant of a binary system, used in 

correlating dilation constants 
= molar volume of the vapor phase or liquid phase 

total volume of the mixture 
= critical volume 
= critical volume characteristic of the i-j interaction 
= partial molar volume of component i in the liquid 

mixture 
= mole fraction in the liquid phase 

mole fraction in the vapor phase 
= compressibility factor 
= critical compressibility factor 

critical compressibility factor characteristic of the i-j 
interaction 

Greek Letter 
aU(l) = self-interaction constant of molecules 2 in the environ-

ment of molecules 1 
au = interaction constant of molecules 1 and 2 
-y activity coefficients for solvent components 
-y. activity coefficients for solute components (in unsym-

metric convention) 
'12(1) dilation constant of solute 2 in solvent 1 
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"* = characteristic constant 01 a solute, used in correlating 
dilation constants 

'Pi fugacity coefficient of component i in a gas mixture 
4> volume fraction as given by Equation 27 
'It solute-free solvent volume fraction as given by Equa-

tion 69 
'" acentric factor 
OG' Ot, = dimensionless constants in Redlich-Kwong equation 

Superscripts 

E 
L 
(pr) 

excess quantity 
= liquid phase 
= at constant reference pressure 

(PO) = at constant reference pressure of zero 
= at saturation s 

o 
• 

reference state 
unsymmetric convention of normalization for activity 

coefficients 

Subscripts 

c critical 
i component i 
~~(j) i-i interaction in the environment of j 
I) i-j interaction 
(MS) = with reference to mlxed solvent 
(SF) = solute-free solvent 
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